Nature

Revising the global biogeography of annual and perennial plants

[ad_1]

  • Friedman, J. The evolution of annual and perennial plant life histories: ecological correlates and genetic mechanisms. Annu. Rev. Ecol. Evol. Syst. 51, 461–481 (2020).

    Article 

    Google Scholar
     

  • Raunkiær, C. Über das Biologische Normalspektrum (Andr. Fred. Host & Son, Kgl. Hof-Boghandel, 1918).

  • Glover, J. D. et al. Increased food and ecosystem. Science 328, 1638–1640 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vico, G., Manzoni, S., Nkurunziza, L., Murphy, K. & Weih, M. Trade-offs between seed output and life span—a quantitative comparison of traits between annual and perennial congeneric species. N. Phytol. 209, 104–114 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Whittaker, R. H. Communities and Ecosystems (Macmillan, 1975).

  • Crawley, M. J. Plant Ecology (Blackwell Science, Oxford, 1997).

  • Begon, M., Townsend, C. R. & Harper, J. L. Ecology: From Individuals to Ecosystems (John Wiley & Sons, 2021).

  • Gurevitch, J., Scheiner, S. M. & Fox, G. A. The Ecology of Plants (Oxford Univ. Press, 2021).

  • Salguero-Gómez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Garnier, E. & Vancaeyzeele, S. Carbon and nitrogen content of congeneric annual and perennial grass species: relationships with growth. Plant. Cell Environ. 17, 399–407 (1994).

    Article 

    Google Scholar
     

  • Roumet, C., Urcelay, C. & Díaz, S. Suites of root traits differ between annual and perennial species growing in the field. N. Phytol. 170, 357–368 (2006).

    Article 

    Google Scholar
     

  • Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology. 97, 75–83 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Murray, B. R., Thrall, P. H., Gill, A. M. & Nicotra, A. B. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 27, 291–310 (2002).

    Article 

    Google Scholar
     

  • Rice, A. et al. The global biogeography of polyploid plants. Nat. Ecol. Evol. 3, 265–273 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Glover, J. D., Reganold, J. P. & Cox, C. M. Plant perennials to save Africa’s soils. Nature 489, 359–361 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreitzman, M., Toensmeier, E., Chan, K. M. A., Smukler, S. & Ramankutty, N. Perennial staple crops: yields, distribution, and nutrition in the global food system. Front. Sustain. Food Syst. 4, 216 (2020).

    Article 

    Google Scholar
     

  • Ledo, A. et al. Changes in soil organic carbon under perennial crops. Glob. Change Biol. 26, 4158–4168 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pimentel, D. et al. Annual vs. perennial grain production. Agric. Ecosyst. Environ. 161, 1–9 (2012).

    Article 

    Google Scholar
     

  • Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Friedman, J. & Rubin, M. J. All in good time: understanding annual and perennial strategies in plants. Am. J. Bot. 102, 497–499 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charnov, E. L. & Schaffer, W. M. Life-history consequences of natural selection: Cole’s result revisited. Am. Nat. 107, 791–793 (1973).

    Article 

    Google Scholar
     

  • World Flora Online (WFO, 2023); http://www.worldfloraonline.org.

  • Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

  • Grimm, N. B. et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 11, 474–482 (2013).

    Article 

    Google Scholar
     

  • Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar
     

  • Chapin III, F. S. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    Article 

    Google Scholar
     

  • Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782 (2020).

  • Datson, P. M., Murray, B. G. & Steiner, K. E. Climate and the evolution of annual/perennial life-histories in Nemesia (Scrophulariaceae). Plant Syst. Evol. 270, 39–57 (2008).

    Article 

    Google Scholar
     

  • Evans, M. E. K., Hearn, D. J., Hahn, W. J., Spangle, J. M. & Venable, D. L. Climate and life-history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis. Evolution. 59, 1914–1927 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Zeineddine, M. & Jansen, V. A. A. To age, to die: parity, evolutionary tracking and Cole’s paradox. Evolution 63, 1498–1507 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Cruz-Mazo, G., Buide, M. L., Samuel, R. & Narbona, E. Molecular phylogeny of Scorzoneroides (Asteraceae): evolution of heterocarpy and annual habit in unpredictable environments. Mol. Phylogenet. Evol. 53, 835–847 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, G. I. Pattern in life history and the environment. Am. Nat. 102, 391–403 (1968).

    Article 

    Google Scholar
     

  • Díaz, S. et al. Plant trait responses to grazing—a global synthesis. Glob. Change Biol. 13, 313–341 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Herben, T., Klimešová, J. & Chytrý, M. Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Funct. Ecol. 32, 799–808 (2018).

    Article 

    Google Scholar
     

  • Pianka, E. R. On r-and K-selection. Am. Nat. 104, 592–597 (1970).

    Article 

    Google Scholar
     

  • Whittaker, R. H. Communities and Ecosystems (Macmillan, 1970).

  • Salinger, M. J. Climate variability and change: past, present and future—an overview. Climatic Change 70, 9–29 (2005).

  • Maitner, B. S. et al. The bien r package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Article 

    Google Scholar
     

  • Tavşanoğlu, Ç. & Pausas, J. G. A functional trait database for Mediterranean basin plants. Sci. Data. 5, 180135 (2018).

  • Parr, C. S. et al. The Encyclopedia of Life v2: providing global access to knowledge about life on earth. Biodivers. Data J. 29, e1079 (2014).

  • Engemann, K. et al. A plant growth form dataset for the new world. Ecology 97, 3243 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • World Checklist of Selected Plant Families (Royal Botanic Gardens, Kew, accessed 20 July 2021); http://apps.kew.org/wcsp/.

  • Kleyer, M. et al. The LEDA traitbase: a database of life-history traits of the northwest European flora. J. Ecol. 96, 1266–1274 (2008).

    Article 

    Google Scholar
     

  • Taseski, G. M. et al. A global growth-form database for 143,616 vascular plant species. Ecology 53, 2614 (2019).


    Google Scholar
     

  • Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys. 74, 1–18 (2016).

    Article 

    Google Scholar
     

  • National Plant Data Team. The PLANTS Database (USDA, NRCS, accessed 23 May 2021); http://plants.usda.gov.

  • Kindt, R. WorldFlora: an R package for exact and fuzzy matching of plant names against the World Flora Online taxonomic backbone data. Appl. Plant Sci. 8, e11388 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GBIF Occurrence Download (GBIF, 2021); https://doi.org/10.15468/dl.5d7wa2.

  • Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article 

    Google Scholar
     

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience. 51, 933–938 (2001).

    Article 

    Google Scholar
     

  • Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-13 (2021); https://CRAN.R-project.org/package=raster.

  • Bivand, R., Keitt, T. & Rowlingson, B. rgdal: bindings for the ‘geospatial’ data abstraction library. R package version 1.5-27 (2021); https://CRAN.R-project.org/package=rgdal.

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

  • Barton, K. Mu-MIn: multi-model inference. R package version 1.43.17 (2009); http://R-Forge.R-project.org/projects/mumin/.

  • Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).

    Article 

    Google Scholar
     

  • Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package version 0.3-21 (2023); https://CRAN.R-project.org/package=adespatial.

  • Sellar, A. A. et al. UKESM1: description and evaluation of the U.K. Earth system model. J. Adv. Model. Earth Syst. 11, 4513–4558 (2019).

    Article 
    ADS 

    Google Scholar
     

  • [ad_2]
    Source link

    Related Articles

    Back to top button