Nature

Continuous symmetry breaking in a trapped-ion spin chain

[ad_1]

  • Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev, Lett. 17, 1133 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gong, Z.-X. et al. Kaleidoscope of quantum phases in a long-range interacting spin-1 chain. Phys. Rev. B 93, 205115 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Maghrebi, M. F., Gong, Z.-X. & Gorshkov, A. V. Continuous symmetry breaking in 1d long-range interacting quantum systems. Phys. Rev. Lett. 119, 023001 (2017).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sachdev, S. Quantum phase transitions. Phys. World 12, 33 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Giamarchi, T. Quantum Physics in One Dimension, Vol. 121 (Clarendon Press, 2003).

  • Cazalilla, M., Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One dimensional bosons: from condensed matter systems to ultracold gases. Rev. of Mod. Phys. 83, 1405 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chen, X., Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Haldane, F. D. M. Nonlinear field theory of large-spin heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Dalla Torre, E. G., Berg, E. & Altman, E. Hidden order in 1d bose insulators. Phys. Rev. Lett. 97, 260401 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gong, Z.-X. et al. Topological phases with long-range interactions. Phys. Rev. B 93, 041102 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ren, J., Wang, Z., Chen, W. & You, W.-L. Long-range order and quantum criticality in antiferromagnetic chains with long-range staggered interactions. Phys. Rev. E 105, 034128 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z., Choudhury, S. & Liu, W. V. Long-range-ordered phase in a quantum heisenberg chain with interactions beyond nearest neighbors. Phys. Rev. A 104, 013303 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Herbrych, J. et al. Block–spiral magnetism: An exotic type of frustrated order. Proc. Natl Acad. Sci. USA 117, 16226 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giachetti, G., Trombettoni, A., Ruffo, S. & Defenu, N. Berezinskii-Kosterlitz-Thouless transitions in classical and quantum long-range systems. Phys. Rev. B 106, 014106 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Potirniche, I.-D., Potter, A. C., Schleier-Smith, M., Vishwanath, A. & Yao, N. Y. Floquet symmetry-protected topological phases in cold-atom systems. Phys. Rev. Lett. 119, 123601 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Patrick, K., Neupert, T. & Pachos, J. K. Topological quantum liquids with long-range couplings. Phys. Rev. Lett. 118, 267002 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bermúdez, A., Tagliacozzo, L., Sierra, G. & Richerme, P. Long-range Heisenberg models in quasiperiodically driven crystals of trapped ions. Phys. Rev. B 95, 024431 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Joshi, M. K. et al. Observing emergent hydrodynamics in a long-range quantum magnet. Science 376, 720 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morong, W. et al. Observation of stark many-body localization without disorder. Nature 599, 393 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumitrescu, P. T. et al. Dynamical topological phase realized in a trapped-ion quantum simulator. Nature 607, 463 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maunz, P. L. W. High Optical Access Trap 2.0. Technical Report (Sandia National Lab., 2016).

  • Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Katz, O., Feng, L., Risinger, A., Monroe, C. & Cetina, M. Demonstration of three- and four-body interactions between trapped-ion spins, Nat. Phys. https://doi.org/10.1038/s41567-023-02102-7 (2023).

  • Olmschenk, S. et al. Manipulation and detection of a trapped yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Egan, L. N. Scaling Quantum Computers with Long Chains of Trapped Ions. Ph.D. thesis, Univ. of Maryland (2021).

  • Ciavarella, A. N., Caspar, S., Illa, M. & Savage, M. J. State preparation in the Heisenberg model through adiabatic spiraling. Quantum 7, 970 (2023).

    Article 

    Google Scholar
     

  • Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. et al. Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Katz, O. & Monroe, C. Programmable quantum simulations of bosonic systems with trapped ions. Phys. Rev. Lett. 131, 033604 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagano, G. et al. Quantum approximate optimization of the long-range ising model with a trapped-ion quantum simulator. Proc. Natl Acad. Sci. USA 117, 25396 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaschke, D., Wall, M. L. & Carr, L. D. Open source matrix product states: opening ways to simulate entangled many-body quantum systems in one dimension. Comput. Phys. Commun. 225, 59 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kac, M., Uhlenbeck, G. & Hemmer, P. On the Van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys. 4, 216 (1963).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Defenu, N. Metastability and discrete spectrum of long-range systems. Proc. Natl Acad. Sci. USA 118, e2101785118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]
    Source link

    Related Articles

    Back to top button